Protein Folding as a Quantum Transition

نویسنده

  • Liaofu Luo
چکیده

The protein folding is regarded as a quantum transition between torsion states on polypeptide chain. The deduction of the folding rate formula in our previous studies is reviewed. The rate formula is generalized to the case of frequency variation in folding. Then the following problems about the application of the rate theory are discussed: 1) The unified theory on the two-state and multi-state protein folding is given based on the concept of quantum transition. 2) The relationship of folding and unfolding rates vs denaturant concentration is studied. 3) The temperature dependence of folding rate is deduced and the non-Arrhenius behaviors of temperature dependence are interpreted in a natural way. 4) The inertial moment dependence of folding rate is calculated based on the model of dynamical contact order and consistent results are obtained by comparison with one-hundred-protein experimental dataset. 5) The exergonic and endergonic foldings are distinguished through the comparison between theoretical and experimental rates for each protein. The ultrafast folding problem is viewed from the point of quantum folding theory and a new folding speed limit is deduced from quantum uncertainty relation. And finally, 6) since only the torsion-accessible states are manageable in the present formulation of quantum transition how the set of torsion-accessible states can be expanded by using statistical energy landscape approach is discussed. All above discussions support the view that the protein folding is essentially a quantum transition between conformational states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Folding as a Quantum Transition Between Conformational States

The importance of torsion vibration in the transmission of life information is indicated. The localization of quantum torsion state is proved. Following these analyses a formalism on the quantum theory of conformation-electron system is proposed. The conformational-electronic transition is calculated by non-adiabatic operator method. The protein folding is viewed from conformational quantum tra...

متن کامل

Pluripotency Conversion of Gene Studied from Quantum Folding Theory

The chemically and physically induced pluripotency in a stem cell is studied from the point of quantum transition between differentiation and pluripotency states in genes. The quantum folding theory of a macromolecule is briefly reviewed. The relation of protein folding rate with the number N of torsion modes participating in the quantum transition (coherence degree) is discussed and a simple s...

متن کامل

Experimental tests of the quantum property of protein folding

Experimental tests on the quantum property of protein folding are discussed. It includes: the test of the instantaneousness of torsion transition through observation of protein structural change in a short time scale of microsecond; the test of non-Arrhenius temperature dependence of protein folding rate and other biomolecular conformational changes; and the search for the narrow spectral lines...

متن کامل

Folding Rate of Protein and RNA Studied from Quantum Folding Theory

Starting from the assumption that the protein and RNA folding is an event of quantum transition between molecular conformations,we deduced a folding rate formula and studied the chain length (torsion number) dependence and temperature dependence of the folding rate. The chain length dependence of the folding rate was tested in 65 two-state proteins and 27 RNA molecules. The success of the compa...

متن کامل

Temperature Dependence of Protein Folding Deduced from Quantum Transition

A quantum theory on conformation-electron system is presented. Protein folding is regarded as the quantum transition between torsion states on polypeptide chain, and the folding rate is calculated by nonadiabatic operator method. The theory is used to study the temperature dependences of folding rate of 15 proteins and their non-Arrhenius behavior can all be deduced in a natural way. A general ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010